Emx2 in the developing hippocampal fissure region.

نویسندگان

  • Tianyu Zhao
  • Nadine Kraemer
  • Judit Oldekamp
  • Murat Cankaya
  • Nora Szabó
  • Sabine Conrad
  • Thomas Skutella
  • Gonzalo Alvarez-Bolado
چکیده

Mice deficient in transcription factor gene Emx2 show developmental alterations in the hippocampal dentate gyrus. Emx2, however, is also expressed in the region around the developing hippocampal fissure. The developing fissure contains a radial glial scaffolding, and is surrounded by the outer marginal zone and the dentate marginal zone, which become specifically colonized by neurons and differentiate into stratum lacunosum-moleculare and molecular layer of the dentate, respectively. In this study we show that the Emx2 mutant lacks the glial scaffolding of the fissure and has an outer marginal zone (precursor of the stratum lacunosum-moleculare), as well as a dentate marginal zone severely reduced in size while most of the reelin (Reln)-expressing cells that should occupy it fail to be generated. We have also identified a subpopulation of hippocampal Reln-expressing cells of the marginal zone, probably born in the hem, expressing a specific combination of markers, and for which Emx2 is not essentially required. Additionally, we show differential mutant phenotypes of both Emx2 and Pax6 in neocortical vs. hippocampal Reln-expressing cells, indicating differential development of both subpopulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emx2 is required for growth of the hippocampus but not for hippocampal field specification.

The vertebrate Emx genes are expressed in a nested pattern in early embryonic cerebral cortex, such that a medial strip of cortex expresses Emx2 but not Emx1. This pattern suggests that Emx genes could play a role in specifying different areas or fields of the cortex along the mediolateral axis. Such a role has been supported by the observation that in mice lacking functional Emx2 the hippocamp...

متن کامل

Impaired postnatal development of hippocampal neurons and axon projections in the Emx2-/- mutants.

The specification and innervation of cerebral subregions is a complex layer-specific process, primed by region-specific transcription factor expression and axonal guidance cues. In Emx2-/- mice, the hippocampus fails to form a normal dentate gyrus as well as the normal layering of principal neurons in the hippocampus proper. Here, we analyzed the late embryonic and postnatal development of the ...

متن کامل

Emx2 is a dose-dependent negative regulator of Sox2 telencephalic enhancers

The transcription factor Sox2 is essential for neural stem cells (NSC) maintenance in the hippocampus and in vitro. The transcription factor Emx2 is also critical for hippocampal development and NSC self-renewal. Searching for 'modifier' genes affecting the Sox2 deficiency phenotype in mouse, we observed that loss of one Emx2 allele substantially increased the telencephalic β-geo (LacZ) express...

متن کامل

Loss of Emx2 function leads to ectopic expression of Wnt1 in the developing telencephalon and cortical dysplasia.

Leptomeningeal glioneuronal heterotopias are a focal type of cortical dysplasia in which neural cells migrate aberrantly into superficial layers of the cerebral cortex and meninges. These heterotopias are frequently observed as microscopic abnormalities in the brains of individuals with central nervous system (CNS) malformations and epilepsy. Previous work has demonstrated that the function of ...

متن کامل

Emx1 and Emx2 functions in development of dorsal telencephalon.

The genes Emx1 and Emx2 are mouse cognates of a Drosophila head gap gene, empty spiracles, and their expression patterns have suggested their involvement in regional patterning of the forebrain. To define their functions we introduced mutations into these loci. The newborn Emx2 mutants displayed defects in archipallium structures that are believed to play essential roles in learning, memory and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2006